
Classification of software structural elements
in test generation task

PhD student - Andrii Franko
Supervisor - Roman Bazylevych

Agenda
1. Introduction
2. Methodology
3. Experiments results
4. Conclusion

Introduction
Test generation requires identification of the changed code parts. Code structural
element recognition is vital for enhancing test generation.

Test generation is dependent on input/output relationship, so AST comparison
alone is not enough for function to be identified as similar for test generation

Input output comparison is required to identify function and it purpose

Methodology

● Take into account function characteristic that are vital for test generation
● Design method that will take into account vital properties

Results

Results
Algorithm would work in cases:

1) Additional set of condition added to function which provides handling for
additional cases (modified switch/case)

2) Distinction between small utility function (getters and setters of different
properties)

3) Distinction between object created by using common design patterns but
which have different roles

Results
The algorithm will fail to identify

Function which have similar structure but use different set of const data. In this
case test should be update because the input/output relationship has been
changed

Function Function

Calculate CRC16 with
polynom1

Calculate CRC16 with
polynom2

AST comparison 100% similarity 100% similarity

Symbolic execution
input/output comparison

0% similarity 0% similarity

Results
The algorithm will fail to identify

Function that were fully rewritten. In this case a new test need to be generated
because the structure has changed.

 Function Function

Calculate Fibonacci
numbers iterative
implementation

Calculate Fibonacci
numbers recursive
implementation

AST comparison 0% similarity 0% similarity

Symbolic execution
input/output comparison

100% similarity 100% similarity

Conclusion

● Proposed algorithm may potentially help in building advanced test generation systems.
It should be further enhanced.

● It may help to balance cases when AST comparison faces problems due to small
function size, or common design pattern usage

● It may detect changes in function when the const data was changed without AST
changes

● It should be further tested on appropriate data sets

