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Introduction
information theory, 
machine learning, 
information security, 
cryptography,
environmental sciences, 
genetics, 
market analysis, 
climate analysis, 
social network analysis,
chemical reactions, 
medical measurements. 

The concept of entropy as a measure of the chaos of a dynamical system is used in numerous applications:

Entropy plays a pivotal role in signal processing and network traffic analysis. It is employed in the
development of algorithms for detecting DDoS attacks, data compression, decision tree construction.
Fractional processes serve as essential models for capturing long-range dependence and self-similarity in
diverse data types. Entropy plays a crucial role in quantifying the complexity and information content of
signals generated by fractional processes, which proves invaluable for tasks like prediction, risk
assessment and anomaly detection. 2



Methodology
 Investigation of the properties of the various entropies for the centered Gaussian distribution with
respect to the parameters was generally done by applying calculus methods.

 It is worth noting that certain theoretical properties, particularly the convexity of the Tsallis entropy,
are challenging to analyze analytically. In such cases, we employ numerical investigations, which offer
insights into theoretical properties.
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Results
We compare the entropies of the one-dimensional distributions of the following fractional processes:
fractional Brownian motion, subfractional Brownian motion, Riemann–Liouville fractional Brownian
motion, bifractional Brownian motion and three types of multifractional Brownian motion (moving-
average, Volterra-type and harmonizable), as well as tempered fractional Brownian motions of the first and
second kind.

We consider normalized versions of these processes to ensure their variances at t=1 to be equal 1. After
this normalization, we observe that fractional Brownian motion, subfractional Brownian motion and
Riemann–Liouville fractional Brownian motion share the same entropies. Similar formulas apply to
bifractional Brownian motion; furthermore, its entropies can be compared to those of fractional Brownian
motion depending on the values of t.

For multifractional Brownian motion, we have established that the moving-average and harmonizable
versions of this process have the same entropies. These entropies can be compared with the
corresponding entropies of Volterra-type multifractional Brownian motion, depending on the behavior of
the Hurst function.

Lastly, for two versions of tempered fractional Brownian motions, we can numerically compare their
entropies depending on the ratio between the multiplicative constants involved in their definitions. 4



Future research
Our research opens up possibilities for future extensions in several directions. 

Potential avenues for further investigation include exploring various entropy measures for non-Gaussian
processes, nonstationary processes and processes with nonstationary increments. Additionally, we
can delve into the solutions of stochastic differential equations that describe the interactions of particle
systems within random environments.
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Conclusion
We examined five distinct entropy measures applied to the Gaussian distribution: Shannon entropy,
Rényi entropy, generalized Rényi entropy, Tsallis entropy and Sharma−Mittal entropy. We investigated
their interrelationships and analyzed their properties in terms of their dependence on specific
parameters. 
Our study extends to fractional Gaussian processes, encompassing fractional Brownian motion,
subfractional Brownian motion, bifractional Brownian motion, multifractional Brownian motion and
tempered fractional Brownian motion. We conducted a comparative analysis of the entropies
associated with the one-dimensional distributions of these processes.
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